Spread the love

Big Data, or Just Data? Doug Laney’s three Vs — volume, velocity and variety — provide a useful definition of big data. However, now big data is the norm in manufacturing environments, perhaps it’s more important to think about a fourth V — value.

Article and image by EU AUTOMATION.

Almost 20 years after the phrase big data was coined, manufacturers have come to realise that the secret to getting the most out of big data isn’t quantity, but quality. By ensuring that the data collected and the analytics performed align closely with the company’s objectives, businesses can improve their operations and remain competitive.

Well optimised big data systems have been proven to help achieve new product development, smarter decision making and both time and cost reductions. Intel, one of the world’s largest manufacturers of processors, estimated a saving of $30 million by streamlining its quality assurance processes as a result of big data analytics.

Time To Strategise

According to Actify.com, 33 per cent of all data could be useful when analysed. However, companies only process 0.5 per cent of all data. By incorporating an enterprise data strategy, companies can ensure they are processing useful data and that time is not wasted on the rest.  A good data strategy will also ensure processes are universal across a business so that data is managed, handled and processed well.

To create an enterprise data strategy there are four key principles that companies should consider. Firstly, the strategy needs to be practical and easy to implement across the organisation. It also needs to be relevant and specifically tailored to the company’s goals as well as evolutionary and adaptable, to keep up with current trends. Finally, the strategy must be universally applied across the business and easy to update when necessary.

Be Prepared

Using smart sensor technology, manufacturers can capture and analyse data from almost any type of machinery involved in their processes. This information can be used to monitor specific, individual parts, like motors or gaskets, to predict upcoming mechanical failures. In turn, these predictions can prevent unnecessary downtime and costs related to emergency maintenance, because manufacturers are able to deal with an issue before it causes any problems.

The gift of knowing when your equipment is likely to break down means necessary maintenance or ordering a specific part can be planned well in advance, ensuring your system runs smoothly without any surprise faults. This is an improvement on just planned maintenance alone, as it means maintenance is only performed when it is required.

Big data, often defined by Doug Laney’s three V’s, has led to great strategic and operational improvements. However, to get the best results for your business, remember to consider the fourth V — value. Ensuring your big data is relevant and of high quality, will always be more important than the quantity.

Check these articles out:

Priming The Pipeline
ZYFRA Presents AI Predictive Maintenance Software At EMO Hannover
How Robots And Humans Are Teaming Up To Take On The World (We Mean, the Warehouse)
EXCLUSIVE: Breaking Limits In Robotics
The Key To Unlocking The Value Of IoT In Manufacturing
Hitachi Vantara Expands Lumada Portfolio To Accelerate Data Innovation Through DataOps
Powering AR In Manufacturing With Edge Computing
Manufacturing Sector Maintains Growth Trajectory Amid Challenging Market Conditions
The Rise Of Smart Cities Around The World
How To Protect Against Biggest Hazards In Oil & Gas Industry?

CLICK HERE FOR LATEST NEWS.
READ CURRENT AND PAST ISSUES OF IAA.
KEEP YOURSELF UPDATED, SUBSCRIBE TO IAA NOW!
AND DON’T FORGET FOLLOW US ON FACEBOOK, LINKEDIN AND TWITTER !

 

Automation In APAC: Trends For 2019
Valve series VUVG and VUVS—Your Everyday Valves