Spread the love

This article offers a look into the factory of the future and presents fundamental steps that every manufacturer should take now to prepare for seamless integration when the Internet reaches the factory. Contributed by marketing department, Microscan systems

The internet is the prevailing medium of digital communication worldwide. However, the concept of using instant, pervasive, and globally connected data over the Internet for the benefit of industrial manufacturing is still in its theoretical stages, with few Internet friendly industrial technologies actually available in the market to put the concept into practice. Despite this, it is speculated that in less than 10 years, the factories of today will learn to harness the power of the Internet not only to connect devices across the factory floor, but also to push and pull meaningful data via the World Wide Web.

For factories of the present, the ability to compete in tomorrow’s economy hinges on their ability to integrate with this Industrial Internet of Things.

How To Prepare For The Factory Of The Future

Understandably, achieving a true implementation of the Industrial Internet of Things is a daunting prospect for industrial manufacturers today. With limited technology, standardisation, or examples currently available in the market, companies would be hard-pressed to implement their own IIoT systems without a significant investment in the development of proprietary tools that may not be compatible with global IIoT systems further down the road.

So, the factory of the present remains similar to the factory of 30 years ago, operating with little connection to the outside world. It will be no easy feat to bridge the gap between intranet and Internet. Those who do, however, will be the first to reap the benefits that the IIoT has to offer, including not only significant competitive advantages in their market, but also a stake in the projected US$14.4 trillion value of IIoT implementation that is expected to be available for private-sector businesses globally by the year 2022 (with 27 percent of this value accounted for by Manufacturing — about US$3.88 trillion).

For the factory of the present, the ultimate goal should be to get on board with the IIoT trend as soon as possible. This does not mean achieving a full implementation in the next year, perhaps not even in the next 10 years, but taking small steps toward Internetbased connectivity now will be critical to being ready when factory technology finally catches up with the Internet on a global scale. The very beginnings of Internet-friendly technology are just now emerging on the market. Leading factory solution providers, in anticipation of an industrial movement toward Internet friendly technologies, have begun to provide both IP-addressable hardware and web services to connect devices on a level that is simpler and more universal than traditional industrial protocols.

1. Get Digital: To prepare for Internet connectivity, data needs to be available in a format the Internet will understand. Factories that are not currently recording electronic information should begin transferring to a digital medium quickly. All data points that are trackable and relevant to business profitability should be recorded. This data can be tracked using machines like barcode readers and machine vision equipment to translate 2D information from barcodes and images into strings of data.

Data should also be standardised using common, repeatable tags (within data strings) that are relevant to the operations being performed. This enables digital data to be filterable, sortable, and actionable within a digital system or database.

Digital, filterable data also enables historical logging and traceability operations. The ability to look back on data and see historical data trends, issues, and events allows companies to take predictive actions to isolate problems, avoid losses, and boost gains when it is most relevant. If this information were decipherable by the World Wide Web, companies would have immediate, remote access to these data points and be better equipped to drive cross-facility optimisation or to take actions to stop issues on a global scale before they become catastrophes.

2. Get Automated: Good practice in preparing for the IIoT is replicating its objective: to be more interconnected, more visible, more real-time, and more self-driven. Ever since the Internet was integrated with consumer devices, the expectation and demand for data availability and speed has grown exponentially. The same can be anticipated of the IIoT in the next 10 to 20 years, with a projected 50 billion IP-addressed ‘things’ connected to the Internet by 2022. The amount of data that will be ricocheting from machine to machine will be incalculable. The importance of establishing a means to act and react instantly and automatically to relevant data in an industrial setting can therefore not be understated.

Although human operators will still have their place in the Industrial Internet Revolution, that place will move farther away from data collection and transmission. Machines are tireless, fast, accurate, and reliable in performing prescribed tasks and retaining information. Automated systems that rely on sensors in machine-to-machine environments are already able to receive and send information to perform tasks that not only meet operational goals but predict operational obstacles.

It is critical for factories of the present to begin to implement automated data acquisition and control components into their operations to collect and respond to data faster. Automation-savvy companies will be well-prepared to utilise the massive amount of information gathered by the Internet. Systems that use Big Data to react to both internal and external trends will gain the advantage in their markets, driving production that is the most flexible to environmental conditions and consumer demands. Implementing automated machines enables companies to keep up with the speed of business today and to prepare for the speed of the Internet soon to come to the factory.

A logistics manager uses web-available data about weather conditions in his fleet’s distribution routes to ensure that trucks arrive on time for pickups and deliveries.

3. Get Connected: The foundation of the IIoT will be communication. Devices will communicate with devices, systems will communicate with systems, and ultimately the entire consumer-market-business structure will be one fully-connected communication engine via the Internet. But before achieving global synchrony, a few connection points have to be established from the sensors on the factory floor to the World Wide Web. There are a number of steps the factory of the present can take today to get ahead of the game and well on the way to full Internet connectivity.

First, industrial devices (such as sensors, data acquisition devices, and measurement tools) should be connected to industrial controls. A barcode reader that communicates a decoded string of data from a product to a PC is sufficient for basic product information logging, but where does the data go from there? For information to be useful across factory systems and beyond, it should not be limited to a single local machine, but shared to a central hub. From a control device, data can be communicated out to other machines or software on the factory floor. This is the first step in establishing machine-to-machine communication, which allows factory automation to occur.

Second, multiple devices in the factory should be connected to the same control system to unite operational processes over a network. An industrial network provides the factory with its own nervous system that is able to communicate data autonomously. Instead of relying on a human operator to feed and transfer data from machine to machine, machines are able to speak directly to one another and react in a programmed, logical manner. Unsurprisingly, the most common control system used in industrial networks today is the Programmable Logic Controller (PLC). This represents the informational hub of all devices in the factory.

Third, a network within a factory should be connected to other critical business systems by way of some unifying service or software. Data that is reported to a PLC should also be able to be communicated to the purchasing system, sales order system, and beyond. This can be accomplished by an MES or other similar operations management platform to enable cross-department communication regardless of various device protocols, allowing factory data to be put to practical use.

4. Get Real-Time, Remote Access: A significant outcome of connecting devices is the ability to extend the reach of data far beyond where it was originally acquired. In the IIoT, achieving a connected factory will be merely a prerequisite to competing in global markets. The Internet pervades spatial and temporal distances, and more and more connected devices are feeding data into the collective reservoir of the World Wide Web. Entities that tap into this global data stream will become as pervasive as the Internet itself, unlimited in their ability to use critical data at any time, from anywhere, across both vertical and horizontal processes.

For vertical processes connected over the Internet, as an example, manufacturing decision makers will gain visibility to current factory conditions anywhere — from the office, off-site, or on the go while walking the factory floor. Linedown issues, over- or underproduction, equipment maintenance needs, and other critical events requiring analysis or manual intervention may be communicated to floor operators via web-based monitoring interfaces or via texts and email alerts sent to their mobile devices. With real-time data always available, managers are able to implement operational changes in the moment to optimise production output, never overlooking a potential risk or an opportunity to adapt for an operational advantage.

5. Get Internet-Friendly Tools: Getting the elements of the connected factory to communicate over web services will be a necessary condition of joining the IIoT. For the factory of the present, it is critical to begin incorporating tools with Internet-friendliness in mind – that is, tools that speak the language of the Internet. Companies in the early stages of implementing automation technology or factory connectivity have the benefit of choosing web-compatible tools as the foundation for their operations.

These companies should consider investing in devices that have a native ability to speak in Internet protocols, such as HTTP. These devices will become more commonplace as the language of industry shifts, and will be simplest to connect to services that can speak directly to the Internet when the World Wide Web (which also speaks HTTP) comes to preside over all global industrial activity.

Industrial HTTP devices are just now making their way into the market as factory equipment providers look ahead to the oncoming Industrial Internet Revolution. To make these tools simple and accessible to factory operators, many HTTP devices host their own web user interfaces. These interfaces offer users an intuitive environment in which to access, monitor, and control devices using web browsers. By entering a device’s unique IP address into a browser window, data acquired by the device is served up and organised into a simple graphical window that appears and behaves much like common software platforms today

Conclusion

The inevitable Internet of Things is already taking shape, absorbing the world of consumer devices and hovering on the horizon of industrial manufacturing. The necessary ingredients for creating the factory of the future are already in place (a market full of sensors, new user-friendly web services, faster data communication networks, cloud storage, advanced computing power, and the ability to analyse Big Data intelligently). These elements are guiding the factory of the present — the factory that has been largely unchanged for more than 30 years — toward the Industrial Internet Revolution. Devices, data, and systems will continue to draw closer to one another over a single web-based medium. In this climate, companies face the formidable challenge of adapting to the change or losing their competitive relevance. But there is still time.

The Industrial Internet of Things is in its infancy; most discussions about IIoT are no more than theories and manufacturers are only just beginning to dabble in the use of web-based technology. The Internet is not going to hit the factory all at once; the transition to global connectivity will be gradual. In the meantime, businesses have a chance to prepare their operations to integrate seamlessly with this new era of industry by taking steps now to implement digital, automated, connected devices and services. Many of these are already able to share data in real-time, from anywhere, across platforms, even — for some — over Internet protocols.

By implementing these tools as they become available, the factory of the present will keep time with the changing landscape of industry until the act of linking to the Internet is simply the next logical step.

Related Post